ПирамидыПирамиды представляют интерес для математиков, историков, физиков, биологов, медиков, философов. Чем больше мы узнаем о пирамидах, тем больше у нас возникает вопросов. Хотя не стоит забывать и о том, что пирамиды таят в себе ответы на огромное количество вопросов, которыми сейчас задается наука. Исследованием пирамид с использованием новейших приборов занимались американцы, японцы. Пирамиды снимали со спутников. Американская станция 'Маринер'' передала фотографии с Марса, на которых изображены такие же пирамиды, что наводит на мысль об их внеземном происхождении. Так что же такое пирамиды? Исторические сведения о пирамиде Крупнейшие из них — пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде. Пирамиды выстроены на левом — западном берегу Нила (Запад — царство мертвых) и возвышались над всем городом мертвых — бесчисленными гробницами, пирамидами, храмами. Самая большая из трех — пирамида Хеопса (зодчий Хемиун, 27 в. до н. э.). Ее высота была изначально 147 м , а длина стороны основания — 232 м . Для ее сооружения потребовалось 2 млн. 300 тыс. огромных каменных блоков, средний вес которых 2,5 т. Плиты не скреплялись строительным раствором, лишь чрезвычайно точная подгонка удерживает их. В древности пирамиды были облицованы отполированными плитами белого известняка, вершины их были покрыты медными листами, сверкавшими на солнце (известняковую обшивку сохранила только пирамида Хеопса, покрытие других пирамид арабы использовали при строительстве Белой мечети в Каире). Близ пирамиды Хефрена возвышается одна из крупнейших статуй древности и нашего времени — высеченная из скалы фигура лежащего сфинкса с портретными чертами самого фараона Хефрена. Великие пирамиды были окружены рядом небольших усыпальниц жен фараонов и их приближенных. В такие комплексы обязательно входили святилища Верхнего и Нижнего Египта, большие дворы для проведения праздника хеб-су, заупокойные храмы, служители которых должны были поддерживать культ умершего царя. Пространство вокруг пирамиды, окруженное стенами, посредством длинного крытого перехода соединялось с храмом на берегу Нила, где встречали тело фараона и начинались погребальные церемонии. Все пирамиды точно сориентированы по сторонам света, что свидетельствует о высоком уровне астрономических знаний древних египтян, расчет углов наклона граней совершенно безукоризнен. В пирамиде Хеопса угол наклона таков, что высота пирамиды равна радиусу воображаемой окружности, в которую вписано основание пирамиды. Замечательной инженерной находкой древних зодчих и строителей было сооружение в толще каменной кладки над погребальной камерой пяти разгрузочных камер, с помощью которых удалось снять и равномерно распределить колоссальную нагрузку на ее перекрытия. Помимо камер в пирамиде есть и другие пустоты — коридоры, проходы и галереи, входы в которые были тщательно замурованы и замаскированы. Тем не менее захоронения в пирамидах были разграблены, видимо, довольно скоро после погребения фараонов. Воры хорошо знали все ловушки, так что они, скорее всего, были связаны либо со строителями, либо со жрецами, осуществлявшими захоронения. Сооружения в Эль-Гизе своей грандиозностью и видимой бесполезностью поражали воображение уже в древности, что лучше всего передает арабская пословица: «Все на свете боится времени, но время боится пирамид». Различные трактовки определения пирамиды Пирамиду Евклид определяет как телесную фигуру, ограниченную плоскостями, которые от одной плоскости (основания) сходятся в одной точке (вершине). Это определение подвергалось критике уже в древности, например, Героном, предложившим следующее определение пирамиды: это фигура, ограниченная треугольниками, сходящимися в одной точке, и основанием которой служит многоугольник. Важнейшим недостатком этого определения является использование неопределенного понятия основания. Тейлор определил пирамиду как многогранник, у которого все грани, кроме одной, сходятся в одной точке. Лежандр в “Элементах геометрии” так определяет пирамиду: “Телесная фигура, образованная треугольниками, сходящимися в одной точке и заканчивающаяся на различных сторонах плоского основания”. После этой формулировки разъясняется понятие основания. Определение Лежандра является явно избыточным, т.е. содержит признаки, которые можно вывести из других. А вот еще одно определение, которое фигурировало в учебниках XIX века: пирамида - телесный угол, пересеченный плоскостью. Чаще всего учащиеся сталкиваются со следующим определением, которое я считаю самым объективным: Пирамидой называется многогранник, который состоит из плоского многоугольника, – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания. Плоскость, проведенная через вершину пирамиды и через какую-нибудь диагональ основания, называется диагональной плоскостью (рис. 4). Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой. Например, SK – апофема правильной пирамиды. При повороте вокруг прямой OS на 360 /5 правильный многоугольник ABCDE каждый раз совместится с собой, тогда совместится с собой и пирамида. Значит, прямая, на которой лежит высота правильной n -угольной пирамиды, есть ее ось симметрии n -го порядка. Отсюда следует, что у правильной пирамиды: 1. боковые ребра равны 2. боковые грани равны 3. апофемы равны 4. двугранные углы при основании равны 5. двугранные углы при боковых ребрах равны 6. каждая точка высоты равноудалена от всех вершин основания 7. каждая точка высоты равноудалена от всех боковых граней Теорема: Если в пирамиде все боковые ребра равны, то вершина проектируется в центр описанной около основания окружности. Теорема: Если в пирамиде все двугранные углы при основании равны, то вершина проектируется в центр вписанной в основание окружности. Поэтому SKO = SLO = SMO = SNO = SPO как прямоугольные треугольники, в которых катет SO общий, а острые углы равны. Из равенства треугольников следует, что OK = OL = OM = ON = OP точка O равноудалена от всех сторон многоугольника ABCDE . Значит, она – центр вписанной окружности. Теорема доказана. Симметрия правильной пирамиды 1. Плоскости симметрии: при четном числе сторон основания — плоскости, проходящие через противолежащие боковые ребра; и плоскости, проходящие через медианы, проведенные к основанию противолежащих боковых граней (рис. 9). Теорема доказана. По теореме (*) плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой. Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды подобные многоугольники, их стороны попарно параллельны, поэтому боковые грани – трапеции. Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-нибудь точки одного основания на плоскость другого основания. Сечение плоскостью, проходящей через два боковых ребра усеченной пирамиды, не лежащих в одной грани, называется диагональным. Например, многогранник ABCDA 1 B 1 C 1 D 1 – усеченная пирамида (рис. 12). Плоский многоугольник ABCDE и сечение A 1 B 1 C 1 D 1 – основания усеченной пирамиды. Трапеции A 1 E 1 EA , E 1 D 1 DE , C 1 D 1 DC , B 1 C 1 CB , A 1 B 1 BA – боковые грани. HH 1 – высота. E 1 C 1 CE – диагональное сечение усеченной пирамиды. Правильная усеченная пирамида Усеченная пирамида называется правильной, если она составляет часть правильной пирамиды (рис. 13). Высота боковой грани правильной усеченной пирамиды называется апофемой. Прямая OO 1 называется осью правильной усеченной пирамиды. Площадь пирамиды Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему. Доказательство: Если сторона основания а, число сторон n , то боковая поверхность пирамиды равна: a l n /2 = a n l /2= pl /2 где l – апофема, а p – периметр основания пирамиды. Теорема доказана. Эта формула читается так: Площадь боковой и полной поверхности усеченной пирамиды Теорема: Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему. Дано: n -угольная правильная усеченная пирамида, l – апофема, p и p 1 – периметры оснований. Доказать: S бок = ½( p + p 1 ) l Доказательство: В правильной усеченной пирамиде все боковые грани – равные между собой трапеции. Пусть основания трапеции a и a 1 , ее высота k , тогда S гр. = ½( a + a 1 ) l , таких граней n , следовательно, S бок = n ½ ( a + a 1 ) l = ½ ( na + na 1 ) l , т.е. S бок = ½ ( p + p 1 ) l Теорема доказана. Измерение объема пирамиды Значит, все три пирамиды имеют один и тот же объем. Так как сумма этих объемов равна объему призмы, то объемы пирамид равны SH /3. Итак, объем любой треугольной пирамиды равен одной трети произведения площади основания на высоту: V = 1/3 SH Пусть теперь имеем любую, не обязательно треугольную пирамиду. Разобьем ее основание на треугольники 1 , 2 , … n . Пирамиды, у которых основаниями являются эти треугольники, а вершинами – вершина данной пирамиды, составляют данную пирамиду. Объем данной пирамиды равен сумме объемов составляющих ее пирамид. Т.к. все они имеют ту же высоту H , что и данная пирамида, то объем ее равен: V = 1/3 H ( S 1 + S 2 + … S n ) = 1/3 SH Доказать : V = h/3 ( S+S 1 + SS 1 ) Доказательство: В усеченной пирамиде площадь сечения плоскостью, параллельной основанию, есть квадратная функция от расстояния сечения до этого основания. Значит, применима формула Симпсона: (1) V = h /6 ( S н + 4 S c + S в ) S н = S , S в = S 1 .Найдем S c . Пусть A 2 B 2 C 2 D 2 – среднее сечение. Примем AB = a , A 1 B 1 = a 1 , A 2 B 2 = x . Основания и среднее сечение – подобные многоугольники, и потому S : S c : S 1 = a 2 : x 2 : a 1 2 отсюда (2) a : x : a 1 = S : S c : S 1 AA 1 B 1 B – трапеция, x – ее средняя линия, значит, (3) = ( a + a 1 )/2 Из (2) следует, что a = m S , x = m S c , a 1 = m S 1 , где m – общая мера. Подставим эти значения в (3): m S c = ( m S + m S 1 )/2, значит, S c = ( S + S 1 )/2 S c = ( S + S 1 ) 2 /4. Подставим значения S н , S в и S c в (1): V = h/6 [S + ( S + S 1 ) 2 + S 1 ] = h/6[S + S + 2 SS 1 + S 1 + S 1 ], т . е . Геометрия тетраэдра ничуть не менее богата, чем геометрия его плоского собрата – треугольника, многие свойства которого в преображенном виде мы находим у тетраэдра. Немало общего имеет тетраэдр с четырехугольником – ведь у обоих по четыре вершины. Треугольники принято классифицировать по степени их симметричности: правильные или равносторонние треугольники имеют три оси симметрии, равнобедренные – одну. Самый симметричный тетраэдр правильный, ограниченный четырьмя правильными треугольниками. Он имеет 6 плоскостей симметрии – они проходят через каждое ребро перпендикулярно противолежащему ребру и 3 оси симметрии, проходящие через середины противолежащих ребер. Менее симметричны правильные треугольные пирамиды (т.е. тетраэдры с равными гранями – 3 оси симметрии). Правильная пирамида переходит сама в себя при поворотах вокруг высоты на 120 и 240 , а также при симметриях относительно плоскостей, проходящих через ось и боковые ребра. По сложившейся не очень логичной традиции, термин «правильный тетраэдр» обозначает частный случай правильной треугольной пирамиды – тетраэдр, у которого все ребра равны, т.е. все грани – равносторонние треугольники. Такой тетраэдр обладает наибольшим набором самосовмещений. Имеется 12 поворотов, переводящих его в себя, 6 симметрий относительно плоскостей и еще 6 движений, сочетающих поворот с симметрией. Тетраэдр и сферы Любой треугольник имеет единственную вписанную и описанную окружности. Точно также у любого тетраэдра есть единственная вписанная (касающаяся всех граней) и единственная описанная (проходящая через все вершины) сферы. Доказательства этих свойств повторяют соответствующие планиметрические: центр вписанной сферы равноудален от всех вершин и лежит на пересечении перпендикуляров, восстановленных к граням из центров их описанных окружностей (т.е. четыре перпендикуляра пересекаются в одной точке). Но кроме граней и вершин тетраэдр имеет еще и ребра. Возникает вопрос: можно ли провести сферу, касающуюся всех его шести ребер (ее называют полувписанной; рис. 16)? Плоскости граней тетраэдра разбивают пространство на 15 областей (рис. 1 7 ). Кроме четырех трехгранных углов, примыкающих к вершинам, остальные 11 областей ограничены всеми четырьмя плоскостями. Внутри тетраэдра, а также внутри четырех «постаментов» – областей, примыкающих к граням, – сфера, касающаяся всех плоскостей, всегда есть. А вот с шестью областями, примыкающими к ребрам и по форме напоминающими четырехскатные крыши или чердаки, дело обстоит сложнее. Оказывается, из двух «чердаков» при противоположных ребрах только у одного может быть вписанная сфера. Таким образом, у правильного тетраэдра – а у него все «чердаки» одинаковы – «чердачных» сфер вообще нет, иначе они присутствовали бы во всех «чердаках». Итак, тетраэдр имеет не менее четырех и не более семи вневписанных сфер, причем все промежуточные случаи возможны. Медианы тетраэдра Медианами в тетраэдре называются отрезки, соединяющие его вершины с центроидами противоположных граней. Эти четыре отрезка всегда пересекаются в одной точке M и делятся в ней в отношении 3:1, считая от вершин (рис. 18). Через ту же точку проходят и бимедианы – отрезки, соединяющие середины противоположных ребер тетраэдра, причем они делятся точкой M пополам. Центроид тетраэдра, как и центроид треугольника, является центром равных масс, помещенных в его вершины, – обстоятельство, которое можно использовать для доказательства приведенных выше свойств. Чисто геометрически их можно доказать с помощью следующей полезной конструкции. Отсюда следует, что все бимедианы проходят через центр O параллелепипеда и делятся им пополам. Нетрудно увидеть, что медианы тетраэдра лежат на диагоналях граней параллелепипеда и также проходят через точку O . Ортоцентрический и прямоугольный тетраэдры Высоты треугольника пересекаются в одной точке – ортоцентре. То же верно и для правильных тетраэдров, в частности для правильных треугольных пирамид. Но, например, у тетраэдра ABCD , вписанного в куб, как показано на рис. 20, ребра AB и DC сами являются высотами и не пересекаются. Приведем еще несколько критериев (т.е. необходимых и достаточных условий) ортоцентричности: тетраэдр является ортоцентрическим тогда и только тогда, когда его противоположные ребра перпендикулярны; или середины всех шести ребер лежат на одной сфере; или все ребра описанного параллелепипеда равны. Некоторые свойства треугольника, связанные с ортоцентром, например теорема о прямой Эйлера и об окружности девяти точек в соответственно измененном виде, можно найти и у ортоцентрического тетраэдра. Центроид ортоцентрического тетраэдра лежит на отрезке между ортоцентром H и центром описанной сферы O и делит этот отрезок пополам, а точка, которая разбивает отрезок OH в отношении 1:2 является центром «сферы 12 точек» – на ней лежат ортоцентры и центроиды всех граней, а также точки, делящие отрезки от H до вершин в отношении 1:2. Доказательства этих теорем не так уж и сложны, хотя и требуют пространственного воображения. Поскольку при проекции площадь фигуры умножается на косинус угла между ее плоскостью и плоскостью проекции, то: (*) S=S 1 cos 1 +S 2 cos 2 +S 3 cos 3 где 1 – угол между плоскостями «гипотенузы» и соответствующего «катета». В то же время каждый из «катетов» совпадает с проекцией «гипотенузы» на его плоскость, поэтому cos i = S i / S . Остается подставить выражение косинусов через площади в уравнение (*). Равногранный тетраэдр Как мы определяем правильный, или равносторонний, треугольник? Естественно, как треугольник, все стороны которого равны. А что такое «стороны» тетраэдра? Если считать, что это ребра, то аналогичное стереометрическое определение приведет к понятию правильного тетраэдра? Но может быть «сторонами» тетраэдра следует считать его грани? Тогда мы приходим к следующему определению: тетраэдр, все грани которого равны (т.е. являются равными треугольниками), называется равногранным. На первый взгляд равногранный тетраэдр – это правильный тетраэдр, и никакой другой. В действительности гранью равногранного тетраэдра может быть любой остроугольный треугольник. Перечислим важнейшие свойства равногранных тетраэдров. Первые два свойства указывают и общий способ их построения: 1. описанный параллелепипед равногранного тетраэдра – прямоугольный (рис. 23); 2. развертка тетраэдра, полученная при разрезании его по трем сходящимся в одной вершине ребрам, – треугольник (рис. 24; этот треугольник должен быть остроугольным, потому что тупоугольный или прямоугольный при сгибании по соседним линиям не сложится в тетраэдр). Набор самосовмещений произвольного равногранного тетраэдра не так богат, как у правильного тетраэдра. 3. у него имеется три оси симметрии (это общие перпендикуляры, проведенные к противоположным ребрам, они же бимедианы; рис. 23). Однако этих симметрий хватает, чтобы можно было совместить любые две указанные грани или вершины, но не ребра. Пользуясь свойствами 1 – 3 и непосредственно определением, легко вывести, что у равногранного тетраэдра: 4. Замечательно другое: все эти свойства равносильны друг другу и каждое из них в отдельности обеспечивает равногранность тетраэдра. Более всего впечатляет свойство 10: Для равенства граней тетраэдра достаточно, чтобы были равны между собой их площади! Итак, все десять перечисленных условий являются одновременно и свойствами и признаками равногранного тетраэдра. Чтобы вывести равногранность из какого-нибудь условия, надо выстроить целую цепочку промежуточных условий, в которой каждое последующее – прямое следствие предыдущего. Отрезки пересекаются (т.е. лежат в одной плоскости) тогда и только тогда, когда либо точка пересечения синих прямых лежит на прямой AB , либо они параллельны. Ученые всех специальностей: астрономы и математики, химики и врачи, генетики и геронтологи – пытаются разгадать тайну пирамид и более подробно изучить их свойства. |